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1 Introduction

Modeling nuclear reactors is complex, requiring multiphysics solutions between neutron-

ics, thermal hydraulics, and fuel behavior. Monte Carlo methods are becoming more desir-

able and feasible with advances in parallel computing technology, yet they are still imprac-

tical for full-core simulations. However, aspects of the simulation where a higher level of

modeling fidelity is required could be performed with Monte Carlo codes, and then these

solutions could be coupled to deterministic codes.

Serpent 2, a three-dimensional continuous-energy Monte Carlo reactor physics burnup cal-

culation code [1], has been tested and produces accurate cross sections for the Advanced

Test Reactor (ATR) and the Transient Reactor Test Facility (TREAT) [2], both here at INL,

and is desirable for use in future TREAT simulations. MAMMOTH is being developed

at INL to produce a full-core solution: neutronics, thermal hydraulics, and fuel behavior

[3]. Preferably, a coupled solution will be obtained which contains Serpent 2 neutronics

coupled with MAMMOTH thermal hydraulics and fuel performance.

This research builds upon and utilizes work performed by both OpenMC and Serpent de-

velopment teams. OpenMC [4], a Monte Carlo particle transport simulation code focused

on neutron criticality calculations, has already completed significant research in coupling

OpenMC and MOOSE [5, 6, 7], which we wish to adapt to Serpent 2. The OpenMC

coupling scheme utilizes a MultiApp and the MOOSE application Cerberus for thermal

feedback. OpenMC also uses Functional Expansion Tallies (FETs), allowing for a more ef-

ficient passing of multiphysics data between OpenMC and MOOSE. Recent development

of the multi-physics interface for Serpent 2 eases the complexity of coupling Serpent with

thermal hydraulic feedback [8]. Details of a Serpent–MOOSE prototype developed several

years ago were graciously provided to us by Ville Valtavirta of the Serpent development

team. This prototype utilizes Userobjects and contains basic heat conduction. We chose to

model our coupling on this prototype.

Coupling Serpent 2.1.26 with MOOSE proved to be complex. We have preliminary results,

but further work is necessary. One of the pre-eminent issues in coupling two codes is ac-

curately and efficiently transferring between their different meshes. The current Serpent–

MOOSE coupling uses the unstructured OpenFOAM mesh on the Serpent side, and the

structured hexahedral mesh on the MOOSE side. Implementing Functional Expansion Tal-

lies (FETs) in Serpent enables us to have a mesh-free fission power distribution in Serpent

which can more easily be transferred to any desired mesh within MOOSE (and eventually

BISON and MAMMOTH). Both of these capabilities have been accomplished. However,
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FETs are implemented in the standalone Serpent and need to be merged with our coupled

Serpent–MOOSE version.
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Serpent–MOOSE version.
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3 Coupling of Serpent and MOOSE

As discussed in the Introduction, coupling the neutronics from Serpent 2 with the thermal

hydraulics and fuel performance in MAMMOTH is the desired path. A coupled Serpent 2

and MOOSE code is a first step towards this. We have completed a parallelizable coupled

Serpent 2.1.26–MOOSE code and tested it successfully on a single fuel pin.

3.1 Implementation

3.1.1 Userobjects

The coupled code utilizes three MOOSE userobjects: ElementTransfer, RunSerpent, and

HeatToMoose. These are built off of the userobjects Ville Valtavirta wrote to couple Ser-

pent 2.1.15 with MOOSE several years ago.

Figure 1 illustrates the flow of the coupled Serpent–MOOSE code. The userobject Heat-

ToMoose transfers the Serpent fission heat generated, per element volume, to the MOOSE

mesh. It reads the power production from the multiphysics interface output file produced

by Serpent into an array and transforms it into the MOOSE 3D mesh. This array can later

be accessed by MOOSE to calculate heat production in a certain element. An initial guess

for the fission power generation (along with the geometry specified by Serpent), which can

be accomplished by running standalone Serpent, must be supplied. MOOSE then runs a

simple heat conduction solution given the fission heat and geometry dictated by Serpent.

The userobject ElementTransfer averages the MOOSE temperature solution field for each

element, transforms this to an OpenFOAM mesh, and transfers this to the Serpent inter-

face input file. Next, the userobject RunSerpent runs either a full Serpent calculation, or if

Serpent has already been run once and does not need to be initialized, a shorter transport

cycle. The initial guess for fission heat is then overwritten by the coupled Serpent when it

calculates new fission power distributions, and the process starts over again, iterating the

number of times specified in the MOOSE input file.

5



Figure 1: Flow of the coupled Serpent–MOOSE code.
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Figure 2: OpenFOAM hexahedron vertices, faces, and edge numbering.

3.1.2 Meshes

The current impementation utilizes an OpenFOAM mesh on the Serpent side. The Open-

FOAM mesh uses a polyMesh object, which has five attributes: points, faces, owners,

neighbors, and boundaries. These are separated into four separate files (boundaries are not

used) in the Serpent multiphysics interface. The points file contains a list of vectors de-

scribing the cell vertices, where the first vector in the list represents vertex 0, the second

vector represents vertex 1, etc. The faces file contains a list of faces, each face being a

list of indices to vertices in the points list, where again, the first entry in the list represents

face 0, etc. The owner file is a list of owner cell labels, the index of entry relating directly

to the index of the face, so that the first entry in the list is the owner label for face 0, the

second entry is the owner label for face 1, etc. And lastly, the neighbor file contains a list

of neighbor cell labels. Fig. 2 shows an example of a hexahedron in the cellShape class,

which is the specific type of polyMesh used on the Serpent side in this coupling.

In the present coupled code, MOOSE uses a GeneratedMesh with dim=3 and elem type=PRISM6,

or simply a rectangular-prism (ie, “box”) mesh, with sides numbered as depicted in Fig. 3.

3.1.3 Code Modifications

MOOSE is written in C++ and Serpent 2 in C. There are two main options for compiling

the coupled code:

1. Use the MOOSE Makefile to direct the compilation of Serpent 2;
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Figure 3: Example of a GeneratedMesh MOOSE rectangular prism.

2. Add the Serpent 2 source code with the MOOSE source code.

The first option is preferable as it allows specific instructions in how the Serpent 2 C code

is compiled. However, the shared libraries were not communicating correctly across the

coupled code so this method was abandoned. With the second option, Serpent 2 C code is

automatically compiled by MOOSE. This means that GFX within Serpent is not compiled

correctly, and therefore Serpent cannot access the GFX graphical functions.

Several modifications to the Serpent 2 code were necessary to create this coupled version.

The main changes are summarized as follows:

• Protect header files from multiple definitions;

• Extern global variables declared in header files;

• Create C file to define those global variables;

• Change main to cmain;

• #define OPEN MP and NO GFX MODE;

• Create DATA EXT MODE option;

• Add extern clause to all *.c and *.h files;

8



• Fix Newton’s method bug in TMS.

The standard wrapper used to protect header files from multiple definitions is shown below.

#ifndef HEADER_NAME
#define HEADER_NAME
...
{header file contents}
...

#endif

The extern clause used in all files is as follows.

#ifdef __cplusplus
extern "C" {
#endif
...
{file contents}
...

#ifdef __cplusplus
} // closing curly bracket
#endif

In testing the single fuel pin case, the analog ke f f was converging to the standalone Serpent

value, but the implicit ke f f was not. In exploring the cause of this we discovered the culprit

in a hidden bug in the TMS method, in tmpmajorants.c. In the Newton’s method solve for

Emin and Emax the derivative was sometimes going toward zero, causing it to blow up and

producing a NaN for Emin or Emax, resulting in a segmentation fault.

Interestingly, this bug is also found in the standalone Serpent 2.1.26, but it did not cause

a problem with the ke f f calculations, nor does it cause a segmentation fault. Perhaps the

different way the standalone version of Serpent 2 is compiled affords it extra protection.

However, Emin/max does still go to ±∞.

Standalone Serpent 2.1.26:
n=108
iter=0 E_max=2.371008e+01 derivative=-7.079385e-01
iter=1 E_max=-3.141819e+197 derivative=-5.162824e-202
iter=2 E_max=3.509165e+00 derivative=-8.152219e+00
iter=3 E_max=3.840001e+00 derivative=-2.672801e+00
iter=4 E_max=4.114408e+00 derivative=-1.070173e+00
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iter=5 E_max=4.354007e+00 derivative=-4.194301e-01
iter=6 E_max=4.568968e+00 derivative=-1.624786e-01
iter=7 E_max=4.764411e+00 derivative=-6.260353e-02
iter=8 E_max=4.941769e+00 derivative=-2.418251e-02
iter=9 E_max=5.097684e+00 derivative=-9.520114e-03
iter=10 E_max=5.221080e+00 derivative=-3.974104e-03
iter=11 E_max=5.294504e+00 derivative=-1.920526e-03
iter=12 E_max=5.316691e+00 derivative=-1.227412e-03
iter=13 E_max=5.318361e+00 derivative=-1.069755e-03
iter=14 E_max=5.318370e+00 derivative=-1.058697e-03
iter=15 E_max=5.318370e+00 derivative=-1.058639e-03
n=109
iter=0 E_max=2.472143e+01 derivative=-6.868821e-01
iter=1 E_max=-4.732367e+216 derivative=-3.472301e-221
iter=2 E_max=3.518731e+00 derivative=-8.271520e+00
iter=3 E_max=3.850415e+00 derivative=-2.728911e+00
iter=4 E_max=4.125319e+00 derivative=-1.092971e+00
iter=5 E_max=4.365260e+00 derivative=-4.284353e-01
iter=6 E_max=4.580483e+00 derivative=-1.659826e-01
iter=7 E_max=4.776144e+00 derivative=-6.395567e-02
iter=8 E_max=4.953719e+00 derivative=-2.470318e-02
iter=9 E_max=5.109901e+00 derivative=-9.722264e-03
iter=10 E_max=5.233697e+00 derivative=-4.055133e-03
iter=11 E_max=5.307649e+00 derivative=-1.955961e-03
iter=12 E_max=5.330193e+00 derivative=-1.246294e-03
iter=13 E_max=5.331919e+00 derivative=-1.083861e-03
iter=14 E_max=5.331928e+00 derivative=-1.072285e-03
iter=15 E_max=5.331928e+00 derivative=-1.072223e-03
n=110
iter=0 E_max=2.924542e+01 derivative=-6.074701e-01
iter=1 E_max=-inf derivative=-1.029385e-317
iter=2 E_max=3.557129e+00 derivative=-8.748723e+00

It would then repeat the cycle and go to infinity again.

The fix for this was fairly simple. The derivative== 0 check was modified to be |derivative|<
1.0e−50, for both Emin and Emax. This fixed the problem and, in addition, should make the

method more efficient.

Standalone Serpent 2.1.26 with fix
n=108
iter=0 E_max=2.371008e+01 derivative=-7.079385e-01
iter=1 E_max=3.509165e+00 derivative=-8.152219e+00
iter=2 E_max=3.840001e+00 derivative=-2.672801e+00
iter=3 E_max=4.114408e+00 derivative=-1.070173e+00
iter=4 E_max=4.354007e+00 derivative=-4.194301e-01
iter=5 E_max=4.568968e+00 derivative=-1.624786e-01
iter=6 E_max=4.764411e+00 derivative=-6.260353e-02
iter=7 E_max=4.941769e+00 derivative=-2.418251e-02
iter=8 E_max=5.097684e+00 derivative=-9.520114e-03
iter=9 E_max=5.221080e+00 derivative=-3.974104e-03
iter=10 E_max=5.294504e+00 derivative=-1.920526e-03
iter=11 E_max=5.316691e+00 derivative=-1.227412e-03
iter=12 E_max=5.318361e+00 derivative=-1.069755e-03
iter=13 E_max=5.318370e+00 derivative=-1.058697e-03
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iter=14 E_max=5.318370e+00 derivative=-1.058639e-03
n=109
iter=0 E_max=2.472143e+01 derivative=-6.868821e-01
iter=1 E_max=3.518731e+00 derivative=-8.271520e+00
iter=2 E_max=3.850415e+00 derivative=-2.728911e+00
iter=3 E_max=4.125319e+00 derivative=-1.092971e+00
iter=4 E_max=4.365260e+00 derivative=-4.284353e-01
iter=5 E_max=4.580483e+00 derivative=-1.659826e-01
iter=6 E_max=4.776144e+00 derivative=-6.395567e-02
iter=7 E_max=4.953719e+00 derivative=-2.470318e-02
iter=8 E_max=5.109901e+00 derivative=-9.722264e-03
iter=9 E_max=5.233697e+00 derivative=-4.055133e-03
iter=10 E_max=5.307649e+00 derivative=-1.955961e-03
iter=11 E_max=5.330193e+00 derivative=-1.246294e-03
iter=12 E_max=5.331919e+00 derivative=-1.083861e-03
iter=13 E_max=5.331928e+00 derivative=-1.072285e-03
iter=14 E_max=5.331928e+00 derivative=-1.072223e-03
n=110
iter=0 E_max=2.924542e+01 derivative=-6.074701e-01
iter=1 E_max=3.557129e+00 derivative=-8.748723e+00

3.2 Results

The coupled Serpent 2.1.26–MOOSE was tested with a single fuel pin surrounded by water,

as shown in Fig. 4 and detailed in Table 1. Results for ke f f for standalone Serpent 2.1.26

and the coupled Serpent 2.1.26–MOOSE are displayed in Table 2. Each were run with

20 inactive cycles and 200 active cycles of 4000 neutrons/cycle, and with OpenMP with 3

threads. The coupled Serpent–MOOSE was run for 5 iterations; only results from the final

iteration are shown.

Fuel Water

Isotope % mass Isotope %mass

235U 2.9971 1H 66.6667
238U 85.153 16O 33.3333
16O 11.85

5 cm2 square 10 cm2 square

Table 1: Fuel pin properties.

The analog and implicit ke f f calculated from the standalone Serpent and coupled Serpent–

MOOSE are within a standard deviation of each other. Still, there is a slight decrease in
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Figure 4: Geometry of single fuel pin.

Standalone Serpent 2.1.26 Coupled Serpent–MOOSE

ke f f (analog) 0.20592 +/- 0.00080 0.20535 +/- 0.00085

ke f f (implicit) 0.20598 +/- 0.00060 0.20542 +/- 0.00061

Transport comp. time 20.9 20.3

Table 2: Fuel pin ke f f values for the standalone Serpent and coupled Serpent–MOOSE.
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the ke f f of the coupled Serpent–MOOSE and this could be due to thermal feedback of

increasing fuel temperatures.
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4 Implementation of FETs

One of the pre-eminent issues in coupling two codes is accurately and efficiently trans-

ferring between their different meshes. The current Serpent–MOOSE coupling uses the

unstructured OpenFOAM mesh on the Serpent side, and the structured hexahedral mesh

on the MOOSE side. Implementing Functional Expansion Tallies (FETs) in Serpent en-

ables us to have a mesh-free fission power distribution in Serpent which can more easily be

transferred to any desired mesh within MOOSE (and eventually BISON and MAMMOTH).

Serpent is a three-dimensional continuous-energy Monte Carlo reactor physics code that

has been used to produce homogenized multi-group cross-sections for deterministic calcu-

lations [1]. The Multiphysics Object-Oriented Simulation Environment (MOOSE) frame-

work developed at Idaho National Laboratory provides a high-level interface for solving

systems of coupled, nonlinear partial differential equations [5], lending itself useful for

modeling multiphysics phenomena found in reactor physics problems. Coupling Serpent

to MOOSE requires an efficient method of receiving and sending spatially-dependent in-

formation. An implementation of functional expansion tallies (FETs) to represent tem-

perature, density, and local power in a single 3-D fuel pin is implemented in Serpent 2.

Preliminary results show that the method is feasible and produces qualitatively acceptable

results.

4.1 Theory

Fuel pins are usually cylindrical. In cylindrical geometry, a scalar-valued function f (r,θ ,z)
can be expanded as the sum of the product of Legendre and Zernike polynomials

f (r,θ ,z) = ∑
i

∑
j

ci jZ j(r,θ)Pi(z) (1)
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where the Zernike polynomials Z j = Zm
n are defined for even n−m and n ≥ m as

Zm
n (r,θ) =

⎧⎪⎨
⎪⎩

√
2(n+1)Rm

n (r)cos(mθ) for m > 0√
2(n+1)R−m

n (r)sin(−mθ) for m < 0√
n+1R0

n(r) for m = 0

Rm
n (r) =

n−m
2

∑
k=0

(−1)k
(

n− k
k

)(
n−2k

n−m
2 − k

)
rn−2k

(2)

where the second and third factors in parenthesis are binomial coefficients.

For brevity in notation and convenience in code implementation, the radial and radial in-

dices n and m are mapped to a single index j using Noll’s indexing. The rules are as

follows:

1. The first entry (n = 0,m = 0) is j = 1.

2. (n,m) with greater n have greater j.

3. (n,m) with m < 0 have odd-numbered j.

4. (n,m) with m > 0 have even-numbered j.

5. Within a given n, (n,m) with greater |m| have greater j.

The Legendre polynomials Pi are defined for integers i ≥ 0 as

Pi(z) =

√
2i+1

2

i

∑
k=0

(
i
k

)(−i−1

k

)(
1− z

2

)k

(3)

where the first two factors in parenthesis are binomial coefficients and the last factor is a

real number.
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From the orthogonality of Zernike and Legendre polynomials, the product Z j(r,θ)Pi(z)
also satisfies

∫ 1

−1
dz

∫ 1

0
dr

∫ 2π

0
dθ

(
Z j(r,θ)Pi(z)

)(
Z j′(r,θ)Pi′(z)

)

= δi,i′δ j, j′

(4)

where δ is the Kronecker delta function. Note that the forms of the polynomials defined in

Eqs. [2] and [3] are normalized so that their inner products are one. The constants ci j can

then be defined as

ci j =
∫ 1

−1
dz

∫ 1

0
dr

∫ 2π

0
dθ f (r,θ ,z)Z j(r,θ)Pi(z) (5)

For the purpose of tallying a score E with weight w at position (r,θ ,z) using functional

expansion tallies, the tally for coefficient ci j can be incremented by a value

Z j(r,θ)Pi(z)Ew (6)

taking care to also increase the total weight W by an amount w.

4.2 Implementation

Serpent 2 provides a multi-physics interface for receiving temperature and density distri-

butions for external coupling with thermal-hydraulic codes. One interface, Type 3, allows

an arbitrary number np of parameters n0, n1, . . . , nnp-1 to be passed into the serepent exe-

cutable sss2 during runtime by means of file I/O. The parameters are parsed and used in

function UserIFC() which is called whenever Serpent samples a given material’s tempera-

ture and density at a point (x, y, z). UserIFC() was modified to accept spatially-dependent

temperature and density through coefficients given by Eq. [5].

Using Alg. [1], temperature and densities from an external code can be passed into Ser-

pent as continuous functions represented only by a handful of coefficients. With up-

dated material properties, Serpent can perform another iteration of a Monte Carlo solution
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Algorithm 1 Outline of UserIFC() function using nz Legendre polynomials

{P0(z),P1(z), . . . ,Pnz−1(z)} and nr Zernike polynomials {Z1(r,θ),Z2(r,θ), . . . ,Znr(r,θ)}.

Note that *f is a pointer to either temperature or density at location (x,y,z).
function USERIFC(*f, x, y, z, nz, nr, c0,1, . . . , cij, . . . , cnz-1, nr)

*f = 0

i = 0

for i < nz do
j = 1

for j ≤ nr do
*f = *f + cij × Z j(r(x,y),θ(x,y)) × Pi(z)

end for
end for

end function

and form a new power distribution. Normally, the local power can only be returned as

volume-averaged quantities using nz equally-spaced axial bins and nr equal-volume ra-

dial bins for each fuel pin. The fission power E with weight w is scored in the function

ScoreInterfacePower() using nz × nr bins.

Algorithm 2 Original ScoreInterfacePower() function using volume-averaged bins.

DetermineBinIndex() is a function that returns the index of the bin (i, j) that contains

position (x,y,z).
function SCOREINTERFACEPOWER(E, w, nz, nr, x, y, z)

i, j = DetermineBinIndex(nz, nr, x, y, z)

AddScoreToBin(E, w, i, j)

end function

Since the underlying data structure for storing lists in Serpent was found to be rather un-

wieldy, the function ScoreInterfacePower() was modified to store nz × nr coefficients

rather than volume-averaged powers. The parameter nz in the input file now sets the num-

ber of Legendre polynomials to use in the axial direction and nr now sets the number of

Zernike polynomials to use for the radial and azimuthal directions. The evaluated Legen-

dre/Zernike polynomial is incorporated into the energy E of the score.

The coefficients are returned in the same format as the volume-averaged bin powers.
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Algorithm 3 Modified ScoreInterfacePower() function using nz Legendre polynomials

{P0(z),P1(z), . . . ,Pnz−1(z)} and nr Zernike polynomials {Z1(r,θ),Z2(r,θ), . . . ,Znr(r,θ)}.

The coefficients are stored in nz × nr bins.
function SCOREINTERFACEPOWER(E, w, nz, nr, x, y, z)

i = 0

for i < nz do
j = 1

for j ≤ nr do
E = E × Z j(r(x,y),θ(x,y)) × Pi(z)
AddScoreToBin(E, w, i, j)

end for
end for

end function

4.2.1 Axial Functional Expansion

A handful of test cases were performed to check that the updated interface was behaving

properly. A radially infinite, axially finite assembly of BWR fuel pins 100 cm in height

(Fig. [3]) was used to examine the axial power profile. Only the coolant densities in

the axial directions ρ(z) were tested. Only one Zernike polynmial, Z1(r,θ) = 1, corre-

sponding to the average value in the (r,θ) direction, was used. Legendre polynomials

{P0(z),P1(z), . . . ,Pnp−1(z)} were used to expand the functional form of the density

ρ(z)≈ n0P0(z)+n1P1(z)+ . . .+nnz−1Pnz−1(z) (7)

using the first nz terms. The functional forms of the axially-dependent densities are listed

in Table 4.
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Parameter Value
Fuel UO2 (1.83% 235U)

Clad Zircalloy

Coolant H2O

Fuel Outer Radius 4.335×10−1 cm

Void Outer Radius 4.420×10−1 cm

Clad Outer Radius 5.025×10−1 cm

Assembly Pitch 1.295 cm

Assembly Height 100 cm

Fuel Nominal Density 10.424 gcm−3

Coolant Nominal Density 1.0 gcm−3

Table 3: Geometric and material parameters of fuel assembly. Note that the coolant nom-

inal density is multiplied by a factor 0 ≤ f ≤ 1 calculated from the current position r,θ ,z
and the coefficients passed into Serpent during runtime.

Case n0 n1 n2 n3 n4

0 1.4142 0 0 0 0

1 0.70711 0.40825 0 0 0

2 0.56569 0.0 0.37947 0 0

3 0.70711 -0.24495 0.31623 0.16036 0

4 0.53033 -0.16330 0.11068 0.10690 0.21213

Table 4: Coefficients used to test axial functional expansion. The listed values are coeffi-

cients used to impose an axial density profile in the coolant.

Case n0 n1 n2 n3 n4 n5 n6

0 0.944 -0.00125 -0.405 9.65e-4 0.0118 3.02e-4 -0.00350

1 0.712 0.372 -0.217 -0.228 -0.0563 0.00440 0.00397

2 0.912 -4.24e-4 0.168 1.93e-4 -0.294 6.20e-4 -0.0619

3 0.608 -0.357 -0.0207 0.234 -0.168 0.00182 0.0117

4 0.737 -0.281 -0.273 0.214 0.0915 -0.0658 -0.0749

Table 5: The first seven coefficients returned from the functional expansion tally of axial

fission power profile in a fuel pin assembly with coolant densities given by Table 4.
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Figure 5: Density and corresponding power for Case 0, the 0th order Legendre expansion

Figure 6: Density and corresponding power for Case 1, the 1st order Legendre expansion
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Figure 7: Density and corresponding power for Case 2, the 2nd order Legendre expansion

Figure 8: Density and corresponding power for Case 3, the 3rd order Legendre expansion
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Figure 9: Density and corresponding power for Case 4, the 4th order Legendre expansion.

The results obtained look reasonable since power appears to peak close to where there is

denser coolant. The 0th order solution follows a cosine power distrubition which matches

analytical solutions. Even in asymmetric density distributions such as Figs. [6], [8], and

[9], the power distributions peak where density is at a maximum and dip somewhat near

where density is at a minimum. It is interesting to note that the transport equation for this

particular problem tends to introduce a strong even-order (n0,n2,n4, . . .) response in the

fission power shown in Table 5.

4.2.2 Radial & Azimuthal Functional Expansion

In most real reactor problems, the radial and azimuthal dependence of fission power comes

mostly from the distribution of the flux in and around the fuel pin rather than the density of

the fuel pin itself. To test if the Zernike polynomials were properly capturing the radial and

azimuthal dependence on neutron flux, a simple test problem was contrived with a single

cylinder of uranium metal partially covered by a strong absorber in water (Table 6).
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Zernike polynomials were used to score the fission power

P(r,θ)≈ n1Z1(r,θ)+n2Z2(r,θ)+ . . .+nnrZnz(r,θ) (8)

using the first nr terms. In the following results, nr = 21, corresponding to a sixth-order

radial expansion.

Parameter Value
Fuel Uranium metal (1.0% 235U)

Absorber Boron-10

Coolant H2O

Fuel Outer Radius 25.0 cm

Absorber Outer Radius 30.0 cm

Assembly Height 100 cm

Fuel Density 10.0 gcm−3

Absorber Density 2.0 gcm−3

Coolant Density 1.0 gcm−3

Table 6: Geometric and material parameters of fuel cylinder. Densities were constant for

each material.

24



Figure 10: Bare fuel cylinder. Top-left: Geometry. Top-right: Power/flux plot. Bottom:
Fission power peaking factor reconstruction.
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Figure 11: Half-covered fuel cylinder. Top-left: Geometry. Top-right: Power/flux plot.

Bottom: Fission power peaking factor reconstruction.
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Figure 12: Quarter-covered fuel cylinder. Top-left: Geometry. Top-right: Power/flux plot.

Bottom: Fission power peaking factor reconstruction.
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Figure 13: Eighth-covered fuel cylinder. Top-left: Geometry. Top-right: Power/flux plot.

Bottom: Fission power peaking factor reconstruction.

28



Figure 14: Sixteenth-covered fuel cylinder. Top-left: Geometry. Top-right: Power/flux

plot. Bottom: Fission power peaking factor reconstruction.
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Figures [10] to [14] show the radial and azimuthal peaking factors that were obtained at

the axial midpoint z = 0 of the fuel cylinder. Its behavior appears to make sense, with

power production being depressed locally where the absorber is present. Using 21 Zernike

polynomials appears to resolve small peturbations in the neutron flux as shown in Fig. [14].

4.3 Results

To quantitatively measure the accuracy of functional expansion tallies in resolving the spa-

tial distribution of the fission power, a benchmark PWR fuel assembly was developed. A

radially infinite, axially finite assembly of PWR fuel pins 366 cm in height was used to

examine how an axially linear density and temperature distribution in the coolant would

affect the fission power distrubtion in the fuel.

Parameter Value
Fuel UO2 (4.5% 235U)

Clad Zircalloy

Coolant H2O

Fuel Outer Radius 4.09575×10−1 cm

Void Outer Radius 4.17830×10−1 cm

Clad Outer Radius 4.74980×10−1 cm

Assembly Pitch 1.25984 cm

Active Fuel Height 366 cm

Fuel Nominal Density 10.424 gcm−3

Coolant Inlet Density 0.74276 gcm−3

Coolant Outlet Density 0.66452 gcm−3

Coolant Inlet Temperature 291.9 ◦C
Coolant Outlet Temperature 325.8 ◦C

Table 7: Geometric and material parameters of fuel assembly. Note that the coolant tem-

perature and density is linearly interpolated between the inlet and outlet values.

To compare results, the fuel pin was partitioned into 10 equally-spaced axial zones and

20 radial zones. The first five innermost radial zone have the same volume and the last

fifteen outermost zones have the same (smaller) volume. This was done since the change in

neutron flux tends to change significantly near the outer edge of the fuel pin. With 10 axial
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zones and 20 radial zones, the neutron neutron fission power in 200 zones was measured

using Serpent detector cards. The functional expansion tally was carried out to 5th order

Legendre and 4th order Zernike polynomials.

Figure 15: Comparison of axial distribution of fission power in fuel pin.

Figure [15] shows the relative error between the discrete Serpent detector and continuous

Functional Expansion Tally for the fissioin power. It is computed by

FET Power Density−Detector Power Density

Detector Power Density
. (9)

Note that areas in dark red represent where the FET overestimates the fission power rel-

ative to the detector and areas in dark blue are areas where the FET underestimates the
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fission power relative to the detector. There are nine dicontinuities in the relative error cor-

responding to transitions between detector regions. In general, the FET seems to match the

detector values near their midpoints. The regions with the largest relative errors are at the

top and bottom of the fuel pin where the fission power is small and the denominator in Eq.

[9] approaches zero. Since the plot of relative error is quite unwieldy, the fission power

density was plotted along one-dimensional cross sections of the fuel pin.

Figure 16: Axial distribution of fission power density along centerline (r = 0).
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Figure 17: Axial distribution of fission power density at radial distance between centerline

and outer edge (r = 0.5).

Figure 18: Axial distribution of fission power density along outer edge of fuel pin (r = 1.0).
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Figures [16] to [18] show the fission power density along different radial sections of the

fuel pin. The fission power reaches a maximum closer to the coolant inlet (z = −1.0) due

to increased moderation from denser water. Closer to the edge of the fuel pin in Fig [18],

there is a significant increase in fission power density due to the fuel’s proximity to the

moderator.

Figure 19: Radial distribution of fission power density at maximum axial power (r =
−0.28).
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Figure 20: Radial distribution of fission power density at axial point just below midpoint

(r ≈ 0).

Figure 21: Radial distribution of fission power density at axial point just above midpoint

(r ≈ 0).
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Figures [19] to [21] show the fission power density along different axial cross sections of

the fuel pin. The difference between Figs. [20] and [21] demonstrate the discontinuity

in relative error shown in Fig. [15]. Immediately before the interface in Fig. [20], the

FET underestimates the fission power density relative to the detector. Immediately after

the interface in Fig. [21], the FET overestimates the fission power density relative to the

detector. Since the FET appears to match with the midpoints of the detectors, this indicates

that smaller detector sizes would still agree with FET results.
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5 Conclusions and Future Work

A parallelizable coupled Serpent–MOOSE code has been created and Functional Expan-

sion Tallies (FETs) have been implemented within Serpent. The coupled Serpent–MOOSE

code simulated a slightly lower ke f f for the single fuel pin case than the standalone Serpent.

At this point it is unclear if this is due to thermal feedback of the rising fuel temperatures or

to statistical variance. The FETs implemented within Serpent provide a smooth, continuous

function which has many advantages over the discontinuous tally system it replaces. The

FETs were accurate representations of fission power in fuel pin geometries. Both methods

show promise of usefulness in reactor analysis at INL.

Further work remains to implement FETs into the coupled Serpent–MOOSE version. An

interface system which not only outputs FETs from Serpent to MOOSE, but also outputs

FETs from MOOSE to Serpent, would be desirable. It is true that the term Functional

Expansion Tally is not absolutely correct when used to describe output from MOOSE, as

MOOSE, not being a Monte Carlo code, does not have “tallies” in the sense of how FETs

are theoretically employed. Nevertheless, it would be possible to distill the MOOSE distri-

butions into functional expansions and therefore we will continue to use the term “FETs”

to describe this final functional-expansion solution. In addition, such an interface system

would also make it easy to store BISON fuel pin power profiles as functional expansions

instead of full meshes, leading to considerable memory savings.

Coupling of Serpent and BISON is also a “next step” in this work, in order to make the

coupled Serpent more useful. Furthermore, investigation of the use of MultiApps instead of

Userobjects should be undertaken. Lastly, at present the coupling uses the single-material

multiphysics Serpent interface. This should be expanded to include multiple materials.
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